Cecil County Division of Development Plans Review
Stormwater Management Pond
As-Built Plans Review Checklist

Project Name: ___

Tax Map: _____ Parcel: _____ Lot: _____

Owner’s Name: ____________________________ _____________________________

Owner’s Address: ____________________________ _____________________________

Engineer/Surveyor: __

Contact Name: ____________________________ Phone Number: ____________________________

Any major change or deviation from the original plan must be redesigned and revised plans submitted to the Cecil County Division of Development Plans Review, prior to the performance of the work.

LEGEND FOR REVIEW CHECKLIST:

<table>
<thead>
<tr>
<th></th>
<th>Accepted</th>
<th>NC</th>
<th>Not Certified</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>Not Applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBMITTALS/METHODS

A. Submittals (1st Review):
 1. Two (2) Folded Redlined As-Built Stormwater Management Plan sets.
 2. Two (2) Sealed Geotech Reports, and Two (2) Compaction Reports.
 3. One (1) Sealed copy of Stormwater Management Computations. (If computations changed due to construction.)

B. Submittals (Final Approval):
 1. Two (2) folded Redlined As-Built Stormwater Management Plan sets signed and sealed by both Professional Engineer in charge and the Professional Geotechnical Engineer.
 _2. One (1) CD or electronic submittal of Scanned Redlined Stormwater Management Plan set. PDF format with a minimum of three NAD 83m x, y coordinates

C. Method:
 1. The minimum information shall be shown in Red on the print with “As-Built” title in the lower right corner or each sheet.
 2. A check mark (✓) may be made beside planned values if they were actually constructed values. For changed values, line out the planned value and enter the actual value.
 3. Elevations to the nearest 0.1’ are sufficient.
 4. There must be the proper relation between the elevations of the principal spillway crest, the emergency/token spillway crest, and the top of the dam. All of these elevations should meet SCS-MD378 criteria.
D. Minimum Information Required:

___1. A signed certification statement and seal by a Professional Engineer

___2. A signed certification statement and seal by a Geotechnical

___3. Plan View:
 ___a. Show the length, width, and depth, or contours of the pool area in red so that As-Built volume can be verified.
 ___b. Trees, shrubs, other woody vegetation- show in green, not allowed within 15 feet of any portion of the embankment.
 ___c. A minimum of three (3) NAD 83m x, y coordinates

___4. Profile along Centerline of Dam
 ___a. Profile of the top of Dam – elevation at stations (the top of fill elevation plus the allowance for settlement)
 ___b. Approximate original ground line
 ___c. Top of impervious core embankment (10 Year DHW minimum, Unified Soil Classification GC, SC, CH, or CL). Compaction meets SCS-MD378 specifications.
 ___d. Approximate bottom of cut off trench (4 feet minimum or deeper if required, Unified Soil Classifications GC, SC, CH, or CL). Compaction meets SCS-MD378 Specifications
 ___e. Principal Spillway location (station and elevation)
 ___f. Emergency or token spillway – location, bottom, width and side slopes (in undisturbed earth only)

___5. Profile – Principal Spillway
 ___a. Top of dam width and side slopes – must be equal to or flatter than design
 ___b. Emergency or token spillway crest elevation
 ___c. Top of impervious core embankment (10 year DHW minimum)
 ___d. Cut-off trench bottom width, slopes, depth
 ___e. High Water Elevations (As-Built) WQv, CPv, 2,10, and Ultimate 100 year storms
 ___f. Riser (Reinforced concrete or metal) – Size, type, riser crest elevation, corrugation size, gauge
 ___g. Low flow stage orifice – size, material, invert elevation
 ___h. Low flow stage trash rack – size, material, dimensions
 ___i. Low flow stage drain pipe – size, type, length, invert elevation, corrugation size, gauge
 ___j. Barrel (Reinforced concrete or metal) – size, corrugation size, gauge, invert elevations, length, concrete pipe classification.
 ___k. Concrete bedding
 ___l. Phreatic Line (from 10 year DHW minimum)
 ___m. Sand Diaphragm or Anti-seep Collars – size, spacing, material
 ___n. Outfall – type, material size, dimensions, filter cloth.

___6. Profile – Emergency or Token Spillway
 ___a. Twenty – five (25) feet minimum level section and elevation
 ___b. Slope protection – type, material size, dimensions, filter cloth
 ___c. Slope of exit section – may be 1-2 % steeper, but no flatter than the design and no narrower than the design.

___7. Section – Emergency or Token Spillway (may be shown on Dam profiles)
 ___a. Width of level Section
 ___b. Dimensions, side slopes, material size

___8. Sand Diaphragm and Anti – Seep Collars
9. Anti – Vortex and Trash Rack Device
 a. Size, type, material and its elevations in relation to the principal spillway riser crest, corrugation size, gauge, dimensions
 b. Detailed construction specifications,
 c. Detail

10. Infiltration and sand filter BMP’s
 a. Type, dimensions, filter material, filter cloth, pipe, detail

11. Elevation/Storage Chart with design elevations and volumes with as-built elevations and volumes for comparison.

12. Notice of Completion Form filled out, signed, and sealed by engineer.

13. Geodatabase Spreadsheet

14. Submit photos showing the complete view of facility verifying readiness for As-Built Inspection